Что такое баллистическая ракета?
Баллистическая ракета — один из видов орудия массового поражения, действующего на дальние дистанции. Летит по изначально заданной параболической траектории и не поддаётся управлению в момент полета.
Существуют разновидности многоступенчатых ракет, похожих на те, что запускаются в космос для доставки спутников на орбиту — в процессе полета части ракеты отсоединяются от основания, чтобы увеличить скорость за счет импульса и уменьшения общей массы. Запуск таких ракет производится либо из шахтных установок расположенных в земле, либо с помощью мобильных перевозных установок.
Классифицируются ракеты каждым государством по-разному, но можно считать общепринятыми ракеты трёх видов:
- Малой дальности.
- Средней дальности.
- Межконтинентальные.
Каждый из видов имеет свои задачи и максимальную длительность проходимого пути. В случае с ракетами малой дальности — это тысяча километров, средняя дальность обладает радиусом запуска в 5.5 тысяч километров, а межконтинентальные, направленные на то, чтобы поразить врага на другом конце земли, имеют дальность достаточную, чтобы облететь 50% земного шара.
Именно такие ракеты начиняют ядерными боеголовками. Самая большая длительность полета займет не более 30 минут, а гигантская скорость делает ракеты практически неуязвимыми для противовоздушной обороны — они просто летят быстрее снаряда, предназначенного для уничтожения этой ракеты.
Как работает баллистическая ракета?
Главная особенность её работы заключается в том, что практически всю длительность своего полета ракета ведет себя в точности, как обычный брошенный объект, не подвергаясь импульсам и ускорениям со стороны двигателей.
Весь её путь можно разделить на два этапа. В первом этапе ракете задаётся необходимая скорость с помощью реактивной тяги. После того, как нужное ускорение было достигнуто, двигатель вместе с топливным баком отсоединяется от ракеты для облегчения её веса. После этого наступает второй этап свободного падения.
Размеры ракет и их масса разнятся в зависимости от предназначения, но усредненные значения стандартного вооружения — 210 тонн массы, 33 метра в длину и около трёх метров в диаметре. Важным является тот факт, что ракеты могут запускаться как с земли, так и своды с использованием водных транспортных средств.
Как запускаются баллистические ракеты?
Баллистические ракеты могут запускаться с разнообразных пусковых установок: стационарных — шахтных (подземных) или открытых, мобильных — на базе колёсного или гусеничного шасси, самолётов, кораблей и подводных лодок.
Какова их дальность полета?
По дальности полета баллистические ракеты классифицируются следующим образом. Они могут быть:
- малой дальности (от 500 до 1000 километров)
- средней дальности (от 1000 до 5500 километров)
- межконтинентальные баллистические ракеты (свыше 5500 километров).
Межконтинентальные баллистические ракеты, дальность полета которых свыше 5500 км, входят в состав наземных и корабельных ракетных комплексов, представляющих собой вместе с тяжелыми бомбардировщиками основу стратегических наступательных вооружений.
Межконтинентальная баллистическая ракета «Сатана» Инфографика
Разновидность баллистических ракет:
- стратегические — предназначены для поражения инфраструктуры врага на его территории; они имеют наибольшую дальность и несут исключительно ядерные боезаряды, так как только они могут гарантировать уничтожение крупных объектов.
- тактические — обладают относительно малой дальностью и предназначены для поражения целей непосредственно в области военных действий, например укреплённых позиций врага и военной техники.
Распространение
Первая в мире межконтинентальная баллистическая ракета Р-7 была успешно испытана в СССР 21 августа 1957 года, принята на вооружение в 1960 году. Американская межконтинентальная баллистическая ракета SM-65 Atlas была успешно испытана в 1958 году, принята на вооружение в 1959 году (на год раньше, чем Р-7). В настоящее время межконтинентальные баллистические ракеты имеются на вооружении России, США, Великобритании, Франции и Китая.
Израиль в вопросе наличия у него ракет межконтинентальной дальности придерживается той же политики, что и в вопросе обладания ядерным оружием — не подтверждает и не отрицает наличия таких ракет. Таким образом, Израиль извлекает из ситуации двойную выгоду: не присоединяясь к международному договору по контролю за распространением ракетных технологий и одновременно держа в напряжении страны региона относительно своих реальных возможностей. При этом, как российские источники, так и источники в других странах, учитывая наличие у этой страны отработанной трёхступенчатой твердотопливной космической ракеты-носителя Шавит, не сомневаются в возможностях Израиля по созданию МБР. Первые две ступени РН «Шавит» имеют «боевое» происхождение, в качестве таковых использованы ступени баллистической ракеты средней дальности . Достоверные данные о характеристиках ракеты , считающейся межконтинентальным боевым вариантом РН «Шавит», отсутствуют.
Ведут разработку своих МБР Индия, КНДР и Пакистан, причём:
- Индия в апреле 2012 года успешно провела первое лётное испытание МБР типа Агни-V, её полномасштабное производство и принятие на вооружение были запланированы на 2014 год, а возможности небоевых индийских космических ракет-носителей (например, GSLV) давно превышают требуемые для МБР массо-энергетические характеристики;
- Северокорейская МБР , начало работ над которой относят к 1987 году, считается рядом источников испытанной под видом космических ракет-носителей серии «Ынха».
Иран, по мнению некоторых обозревателей[каких?], при помощи программы освоения космоса разработает технологии, позволяющие создать собственную МБР. В частности, иранская космическая ракета-носитель Сафир-2 при запуске по суборбитальной траектории может доставить боезаряд на расстояние 4000—4500 км.
ЮАР для противостояния как странам советского блока, так и Запада в 1980-х годах разрабатывала МБР RSA-3 (при содействии Израиля), но отказалась от принятия её на вооружение после краха режима апартеида.
Историческая справка
Первые серийные ракеты (V2)Vergeltungswaffe-2
Первые теоретические работы, связанные с описываемым классом ракет, относятся к исследованиям К. Э. Циолковского, с 1896 года систематически занимавшегося теорией движения реактивных аппаратов. 10 мая 1897 года в рукописи «Ракета» К. Э. Циолковский вывел формулу [2] (получившую название «формула Циолковского»), которая установила зависимость между:
- скоростью ракеты в любой момент, развиваемой под воздействием тяги ракетного двигателя
- удельным импульсом ракетного двигателя
- массой ракеты в начальный и конечный момент времени
Формула Циолковского и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет. В 1903 году учёный, в статье «Исследование мировых пространств реактивными приборами» и последовавших её продолжениях (1911 и 1914), разработал некоторые положения теории полёта ракет (как тела переменной массы) и использования жидкостного ракетного двигателя.
В 1917 году Роберт Годдард из Смитсоновского института в США запатентовал изобретение, значительно повышавшее эффективность работы силовой установки за счёт применения на жидкостном ракетном двигателе сопла Лаваля. Это решение вдвое повышало эффективность ракетного двигателя и имело огромное влияние на последующие работы Германа Оберта и команды Вернера фон Брауна.
К 1929 году К. Э. Циолковский разработал теорию движения многоступенчатых ракет в условиях действия земной гравитации, выдвинул ряд идей, нашедших применение в ракетостроении: графитовых газовых рулей для управления полётом ракеты; использования компонентов топлива для охлаждения стенок камеры сгорания и сопла; насосной системы подачи компонентов топлива; использование в системах стабилизации гироскопа, применение многокомпонентных ракетных топлив (в том числе, рекомендовал топливные пары: жидкий кислород с водородом, кислород с углеводородами) и др.
В 1920-х годах научные исследования и экспериментальные работы по разработке ракетных технологий вели несколько стран. Однако, благодаря экспериментам в области жидкостных ракетных двигателей и систем управления, в лидеры по разработке технологий баллистических ракет вышла Германия.
Работа команды Вернера фон Брауна, позволила немцам разработать и освоить полный цикл технологий, необходимых для производства баллистической ракеты Фау-2 (V2), ставшей не только первой в мире серийно изготавливаемой боевой баллистической ракетой (БР) [3] , но и первой получившей боевое применение (8 сентября 1944 года). В дальнейшем, Фау-2 (V2) стала отправной точкой и основой для развития технологий ракет-носителей народнохозяйственного назначения и боевых баллистических ракет, как в СССР, так и в США, которые вскоре стали лидерами в этой области.
Первая боевая ракета
Если я спрошу, когда была создана первая ракета, многие ответят, что во второй половине XX века. Кто-то скажет, что подобное вооружение широко использовалось во Второй мировой войне, а кто-то даже блеснет знанием такого названия, как Фау-2. Но только единицы вспомнят, что первые орудия, которые отдаленно напоминали ракетное оружие, появились еще в XI веке в Китае.
Они представляли из себя стрелу, к которой снизу была прикреплена капсула, заполненная порохом. Такая стрела запускалась с руки или из лука, после чего порох воспламенялся и обеспечивал реактивную тягу.
Еще один пример интересного вооружения: #Видео | Китайский беспилотный вертолет оснащен ракетами и пулеметом
Позже были фейерверки, различные эксперименты с моделями ракет и наконец полноценные образцы вооружений, которые со временем частично заменили работу пехоты со стрелковым оружием и даже авиацию.
Первым военным конфликтом, в котором массово применялось ракетное оружие, действительно была Вторая мировая война. Чаще всего такое оружие применялось в установках залпового огня «Катюша» (СССР) и «Nebelwerfer» (Германия). Были и более продвинутые образцы, например, та самая ракета Фау-2. Ее название происходит от немецкого названия Vergeltungswaffe-2, что в переводе означает ”оружие возмездия”. Она была разработана немецким конструктором Вернером фон Брауном и принята на вооружение вермахта в конце Второй мировой войны. Ракета имела дальность поражения до 320 километров и использовалась преимущественно для поражения наземных целей в городах Англии и Бельгии.
По-настоящему широкое распространение ракетное вооружение получило после Второй мировой войны. Так, например, в 1948 году дальность полета советских ракет Р-1 составляла 270 км, а спустя всего 11 лет были созданы ракеты Р-7А с дальностью до 13 000 км. Как говорится, ”разница на лицо”.
Вторая мировая война
МБР А-9/А-10
Первой из стран, приступивших к работам по созданию межконтинентальных баллистических ракет, стала нацистская Германия. Летом 1942 года под руководством Вернера фон Брауна стартовал проект «Америка» по созданию ракеты A9/A10. Это была двухступенчатая ракета на жидком топливе весом в 100 тонн с заявленной дальностью около 5000 км. Хотя по современной классификации A9/A10 формально относится к ракетам средней дальности, она создавалась как межконтинентальное оружие, способное нанести удар по восточному побережью США. Технически, A9/A10, тем не менее, не относилась к баллистическим ракетам, так как включала верхнюю крылатую ступень, де-факто представляющую собой сверхзвуковую крылатую ракету.
Наведение ракеты в начале и середине полёта осуществлялось при помощи радиомаяков, заранее установленных на цель и активируемых в определённый момент, на завершающей части — пилотом, который незадолго до цели должен был покидать небольшую кабину на парашюте и приводняться в Атлантическом океане после того, как совершал суборбитальный космический полёт . По некоторым источникам, испытания в рамках проекта проводились как минимум дважды — 8 и 24 января 1945 года, однако до боевого применения дело не дошло . По другим источникам, работы по программе не продвинулись далее эскизов (что более вероятно). Из-за недооценки немцами сложности планирующего полёта на сверхзвуковых скоростях (что было ключевым элементом проекта), вероятно, система A9/A10 никогда бы не смогла функционировать.
После разгрома Германии, США и СССР вывезли к себе большое количество специалистов, документации и материальной базы по ракетным разработкам.
Холодная война
Межконтинентальные баллистические ракеты на жидком топливе
В США работы по созданию дальнобойных (впоследствии — межконтинентальных) баллистических ракет велись с 1946 года в рамках программы Convair RTV-A-2 Hiroc. В 1948 году было осуществлено несколько запусков небольшого прототипа перспективной МБР, однако, ввиду слабого внимания ВВС США к баллистическим ракетам, программа была закрыта. Однако, в дальнейшем программа послужила основой для создания первой американской МБР SM-65 Atlas
Ракета с индексом SM-65D после продолжительной серии испытаний трёх прототипов была запущена 14 апреля 1959 года, а на вооружение была принята уже в сентябре 1959. Эта ракета, а также американский «Титан», принятый на вооружение в 1961 году, размещались изначально на незащищённых пусковых комплексах, но впоследствии стали развёртываться сначала в заглублённых железобетонных бункерах (SM-65E, с 1960 года), а затем в надёжно защищённых шахтах (SM-65F, с 1961 года). Подготовка ракет к запуску занимала от 15 минут до получаса.
В Советском Союзе научные изыскания по поводу возможности создания МБР начались в 1950 году. В 1953 году был готов эскизный проект такой ракеты. В 1954 году непосредственное создание ракеты с индексом Р-7 было поручено ОКБ-1 под руководством Сергея Королёва. Двухступенчатая «Семёрка» была способна доставить один 3-мегатонный ядерный заряд на расстояние 8 800 км. Её первое успешное испытание (после трёх неудач) состоялось 21 августа 1957 года. C 1954 года основные работы по созданию межконтинентальных баллистических ракет в СССР были переданы во вновь образованное ОКБ-586 под руководством М. К. Янгеля. В 1959 году в СССР была принята на вооружение ракета Р-12, ставшая основой созданного отдельного рода войск — РВСН, а в 1962 году — ракета Р-16, модификация которой стала первой советской ракетой, базирующейся в шахтной пусковой установке и первой в мире ракетой, стартующей из шахты (американские SM-65 Atlas только хранились в шахтах, перед запуском поднимаясь на поверхность лифтом).
Межконтинентальные баллистические ракеты на твёрдом топливе
В том же 1962 году в ВВС США поступила на вооружение первая МБР на твёрдом топливе: LGM-30A. Преимущества твёрдотопливных МБР — простота и безопасность обслуживания и хранения, постоянная готовность к запуску — были таковы, что в 1960-х США развернули более 800 МБР LGM-30A, полностью заменив ими старые жидкотопливные ракеты «Атлас» и «Титан-I» [9] . В дальнейшем США не предпринимали более попыток разработки жидкотопливных ракет.
В СССР для получения опыта в области твёрдотопливных ракет дальнего действия в 1959 году были начаты работы по трёхступенчатой твердотопливной ракете РТ-1 (8К95) на баллиститном порохе (из-за отсутствия технологий по смесевым топливам), однако из стадии испытаний данный проект не вышел (аварийность пусков была высокой), хотя и позволил отработать ряд технологий, так, модификация РТ-1-63 использовалась для отработки верхних ступеней первой советской твёрдотопливной МБР РТ-2 (8К98), работы по которой были начаты одновременно с РТ-1, в рамках одного комплексного постановления. РТ-2 была принята на вооружение только в 1968 году.
Ракеты с разделяющимися боеголовками
Важным этапом в развитии ракетной техники было создание систем с разделяющимися головными частями. Первые варианты реализации не имели индивидуального наведения боевых блоков: выгода от использования нескольких небольших зарядов вместо одного мощного заключается в большей эффективности при воздействии по площадным целям, а также затрудняло действия возможной противоракетной обороны противника. Так, в 1970 году Советским Союзом были развёрнуты ракеты Р-36 с тремя боевыми блоками по 2,3 Мт.
В том же году США поставили на боевое дежурство первые комплексы Minuteman III, которые обладали совершенно новым качеством — возможностью разведения боеголовок по индивидуальным траекториям для поражения нескольких целей. Для этой цели ракета оснащалась блоком разведения: дополнительной ступенью с маневровыми двигателями, которая одну за другой выводила боеголовки на курс.
В СССР были приняты на вооружение первые мобильные МБР: Темп-2С на колёсном шасси (1976 год) и РТ-23 УТТХ железнодорожного базирования (1989 год). В США также велись работы по аналогичным комплексам, но ни один из них не был принят на вооружение.
Особым направлением в развитии межконтинентальных баллистических ракет являлись работы по «тяжёлым» ракетам. В СССР такими ракетами стали Р-36, и её дальнейшее развитие Р-36М, принятые на вооружение в 1967 и 1975 годах, а в США в 1963 году на вооружение встала МБР «Титан-2». В 1976 году КБ «Южное» приступило к разработке новой МБР РТ-23, тогда как в США с 1972 года велись работы по ракете MX; они были приняты на вооружение в 1989 (в варианте РТ-23УТТХ) и 1986 годах, соответственно. Р-36М2, поступившая на вооружение в 1988 году, является самой мощной и самой тяжёлой в истории ракетного оружия: 211-тонная ракета при стрельбе на 16 000 км несёт на борту 10 боевых блоков мощностью 750 Кт каждый.
Принцип работы и конструкция МБР
За небольшой отрезок времени перед стартом в систему управления ракеты вносятся координаты цели и параметры траектории полета, после чего происходит пуск двигателей первой ступени. Во время разгона МБР специальными рулями корректируется курс для вывода ее на вычисленную траекторию. На нужной высоте выполняется расстыковка носителя и головной части с боеголовкой.
Головная часть продолжает инерциальное движение, ориентируясь на цель при помощи своих двигателей, и выставляет боеголовки на определенную траекторию. Носитель и отработанные ступени после разделения падают и сгорают в плотных слоях атмосферы.
МБР состоит из разгонных ступеней и головной части с боевымблоком (защищен специальным обтекателем). В головную часть входят: разводящая установка («автобус»), боеголовка (боеголовки), система подавления ПРО противника, бортовой электронный вычислительный комплекс (БЭВК).
Существует три типа баллистических ракет в зависимости от вида используемого топлива: твердотопливные (алюминий+перхлорат аммония), жидкотопливные (керосин+жидкий кислород), смешанные (ступени с разным типом топлива — «Кречет»).
Последние почти не используются.
Твердотопливные МБР имеют более простую конструкцию, дольше хранятся, быстрее приводятся в готовность. Но жидкотопливные МБР имеют лучшие летные показатели, большую полезную нагрузку, способны к многократным циклам включения/выключения и регулировке тяги.
Различается также и материал, из которого изготавливаются ступени ракеты. В твердотопливных МБР используется композит на основе стеклопластика с внутренним термостойкимпокрытием. В жидкотопливныхМБР корпус выполнен из сплава алюминия и магния. Внешняя поверхность всех типов ракет покрыта слоем темного цвета, который защищает корпус от нагрева и поражающих факторов при ядерном или нейтронном взрыве.
Отделение ступеней происходит по минометной схеме – пространство между ступенями заполняется газом из газогенератора и срабатывают детонирующие заряды в месте крепления ступеней. Данная схема позволяет развести ступени без удара, а также предельно плотно скомпоновать межступенную область.
Команда на разделение ступеней подается БЭВК при достижении необходимой скорости и траектории. Если в отделяемой ступени остается топливо, то его неконтролируемое догорание не влияет на курс. Время разгона ракеты составляет до 5 минут, достигаемая скорость головной части — 6-8 км/с.
После отделения головной части начинает свою работу ступень разведения.
При помощи жидкотопливных двигателей происходит расстановка боевых блоков по траекториям. За точность данной операции отвечает радиоэлектронное оборудование и вычислительный комплекс с инерциальной системой управления.
Для защиты от перегрева и поражающих факторов ядерного оружия на боевой ступени установлен обтекатель определенной формы с защитным покрытием. Он улучшает аэродинамические показатели во время полета в плотных слоях атмосферы. По достижении рассчитанной БЭВК высоты происходит его сброс.
Головная часть – передняя часть ракеты с боевым блоком, выполненная в виде конуса. В боевом блоке в большей своей массе используются термоядерные заряды. По количеству таких зарядов головная часть является моноблочной (только 1 заряд) или разделяющейся. В зависимости от способности управления после отделения ГЧ можно разделить на маневрирующую и неуправляемую.
Разделяющаяся головная часть бывает рассеивающего типа и с отдельным наведением каждой боеголовки. Рассеивающий тип ГЧ в настоящее время не применяется из-за своей низкой эффективности. Головная часть с отдельным наведением каждого боевого блока (ББ) может поражать цели, находящиеся на значительном расстоянии.
Точность попадания ББ описывается параметром КВО – максимальный радиус круга, в который упадет ББ в 50% случаев. Для американских МБР лучший показатель составляет около 100 м, для российских – 200 м.
Для противодействия ПРО противника в головной части кроме боевого блока размещены средства преодоления ПРО.
К ним относятся: различного вида отражатели; легкие и тяжелые ложные цели (последнее поколение имеет собственные двигатели и способноследовать за боевыми блоками до самой поверхности); передатчики – постановщики помех. Общая масса системы преодоления – до 0,5 тонны.
К довольно действенным средствам преодоления ПРО можно отнести использование настильной траектории. Небольшая высота полета значительно снижает заметность МБР, кроме того кратно снижается дальность и время подлета. Так как современные ГЧ баллистических ракет способны маневрировать при вхождении в атмосферу, то задача комплексов ПРО сильно усложняется.
За точный вывод головной части с ББ на определенную траекторию отвечает бортовой электронный вычислительный комплекс в паре с навигационной системой управления. Высокая точность попадания обеспечивается использованием в системе управления ракеты алгоритмов на основе астрокоррекции (угловое положение стабилизированной гироплатформы относительно выбранной звезды) и радиокоррекции через ГЛОНАСС системы наведения.
Фазы полета и базирование МБР
Во время полета баллистическая ракета проходит через три фазы траектории:
- Активный участок. Старт, разгон и выведение головной части на траекторию для удара. Твердотопливные МБР последнего поколения проходят данный участок за три минуты, достигая высоты 200 км. Жидкотопливные – пять минут и 300 км соответственно. Планируется, что время прохождения данного участка для ракет нового поколения составит менее минуты.
- Пассивный участок. ББвместе с комплексом преодоления ПРО летят по инерции. Работает ступень разведения.
- Атмосферный участок. Вход блоков и ложных целей в плотные слои атмосферы с их разогревом при торможении. Длительность – около 90 секунд.
Все современные МБР входят в состав наземных или морских комплексов. МБР наземных комплексов имеют в свою очередь шахтное (ШПУ) или мобильное базирование (грунтовые, железнодорожные).
Наиболее защищенные и боеспособные- ракеты, размещенные в шахтных пусковых установках.
Их время подготовки к пуску – до четырех минут. Кроме того они способны выдержать прямоепопадание МБР противника и гарантированно быть запущенными для ответного удара по агрессору с неприемлемыми для него потерями.
В США и России пришли к одинаковому выводу – рассредоточенное расположение шахт на своей территории позволяет добиться снижения эффективности МБР противника, т.к. уменьшается шанс выведения из строя нескольких ШПУ за один удар. Другие варианты были либо слишком дорогие, либо не обеспечивали должный уровень защиты.
Самая совершенная наземная МБР у России — ракета 15А18М комплекса Р-36М2 «Воевода» с разделяющейся ГЧ и индивидуальным наведением каждой отдельной боеголовки (до 36 шт.). У США — LGM-30G «Minuteman-III» с наименьшим активным участком полета (160 секунд), наилучшей точностью среди всех МБР и РГЧ с тремя боевыми частями индивидуального наведения.
МБР морского базирования размещаются на специальных атомных подводных лодках (АПЛ) – ракетных крейсерах. Запуск осуществляется с вертикальных шахтв подводном (минометная схема) или надводном положении.
Патрулирование вод АПЛ у побережья потенциального противника исключает вероятность их уничтожения ядерным ударом, а также позволяет почти мгновенно запустить МБР в ответ, т.к. время и расстояние подлета значительно меньше. Но есть шанс, что подлодка или баллистическая ракета будет уничтожена кораблями противника во время пуска.
На данный момент на вооружении американских АПЛ класса «Огайо» размещаются до 24 БРПЛ UGM-133A Трайдент 2 с дальностью полета до 10 тыс. км суммарной мощностью 3,75 Мт каждая.
Российские АПЛ проекта 941 оснащены 16 ракетами Р-39 и Р-29РМ с 10 ББ (2Мт), дальность полета — 8 тыс. км.
Способы защиты
Система предупреждения о ракетном нападении (СПРН) предназначена для обнаружения запуска ракет противником и расчета времени и места их подлета. Она позволяет вовремя привести в боевую готовность свои МБР и нанести ответный удар.
В СПРН входят: группировка искусственных спутников Земли, которая отслеживает старт МБР; радиолокационные станции дальнего обнаружения; загоризонтные радиолокационные станции. Данной системой обладают Россия и Америка.
Оружие упреждающего удара — высокоточные ракеты малой дальности (Pershing-2), способные с большой вероятностью вывести из строя шахтные пусковые установки. Эффективность снижается при использовании противником маскировки в виде ложных ШПУ, т.к. большая часть МБР остается боеспособной.
Стратегическая ПРО подразумевает перехват МБР противника специальной баллистической противоракетой с осколочной или ядерной боевой частью.
К концу 20-го века территориальная ПРО не создана (имеет объектовый характер).
Свое развитие система получила после выхода США из договора по ограничению ПРО в 2001 году. Была разработана противоракета GBI и ее облегченная версия PLV. Районы размещения – Калифорния, Аляска, Восточная Европа. Моделирование с перехватом GBI одиночной неманеврирующей ГЧ дало 98% шанс уничтожения.
По мнению зарубежных и российских специалистов использование ГЧ с боевыми блоками индивидуального наведения и современной системой ложных целей делает американскую противоракетную оборону бесполезной. Так из расчетов следует, что вероятность преодоления ПРОракетой «Тополь-М» — 99%.
Использование ракеты в гражданских целях
Устройство баллистической ракеты и манера её поведения в воздухе мало чем отличаются от ракет, запускаемых в космос на орбиту Земли. Благодаря этому удобству существует возможность создания универсальных устройств, которые в зависимости от внутреннего содержания будут использоваться в мирных или в военных целях.
На сегодняшний день существует несколько видов универсальных ракет, которые изначально были созданы с целью выведения на орбиту планеты различного военного спутникового оборудования. Целый класс ракет предназначен для вариативного использования. Стоит понимать, что одну и ту же ракету нельзя переоснастить для других целей. Хоть они и имеют общую базу, но собираются на различных заводах и не подлежат взаимному замещению.
Способ базирования
По способу базирования межконтинентальные баллистические ракеты делят на:
- запускаемые с наземных стационарных пусковых установок: Р-7, «Атлас»;
- запускаемые из шахтных пусковых установок (ШПУ): РС-18, PC-20, «Минитмен»;
- запускаемые с мобильных установок на базе колёсного шасси: «Тополь», «Миджитмен»;
- запускаемые с железнодорожных пусковых установок: РТ-23УТТХ;
- запускаемые со дна морей и океанов во всплывающих капсулах: «Скиф»;
- баллистические ракеты подводных лодок: «Булава», «Трайдент».
Первый способ базирования вышел из употребления ещё в начале 1960-х годов, как не отвечающий требованиям защищённости и скрытности. Современные ШПУ обеспечивают высокую степень защиты от поражающих факторов ядерного взрыва и позволяют достаточно надёжно скрывать степень боеготовности стартового комплекса. Остальные три варианта являются мобильными, а значит более трудно обнаруживаемыми, однако накладывают существенные ограничения на размеры и массу ракет.
МБР компоновки КБ им. В. П. Макеева
Неоднократно предлагались и другие способы базирования МБР, призванные обеспечить скрытность развёртывания и защищённость стартовых комплексов, например:
- на специализированных самолётах и даже дирижаблях с запуском МБР в полёте;
- в сверхглубоких (сотни метров) шахтах в скальных породах, из которых транспортно-пусковые контейнеры (ТПК) с ракетами должны перед пуском подниматься к поверхности;
- на дне континентального шельфа во всплывающих капсулах;
- в сети подземных галерей, по которым непрерывно движутся мобильные пусковые установки[источник не указан 1716 дней], но ни один из подобных проектов не был доведён до практической реализации.
Земля-земля
Российские ракеты земля-земля запускаются с ракетных комплексов (РК), расположенных в шахтах, на земном рельефе или на кораблях, и предназначены для поражения наводных, наземных и заглубленных в землю целей.
Пуски таких ракет возможны как с неподвижных сооружений, так и с передвижных самоходных либо буксируемых установок.
Ранее на вооружении ракетных войск состояли в основном неуправляемые ракетные снаряды (НУРС). Новые ракеты земля-земля создают и производят управляемыми, снабженными аппаратурой, регулирующей их полет и обеспечивающей достижение цели.
Земля-воздух
Зенитно-ракетный комплекс С-400
Класс земля-воздух объединяет зенитные управляемые ракеты (ЗУР), рассчитанные на уничтожение воздушных целей, в основном боевой и транспортной авиации противника.
По способу запуска и управления различают четыре вида ЗУР:
- радиокомандные;
- наводящиеся по радиолучу;
- самонаводящиеся;
- комбинированные.
Также ракеты земля-воздух различаются по аэродинамическим особенностям, дальности, высоте и скорости воздушных «мишеней».
Показательный пример российских ЗУР — зенитные комплексы с ракетами средней и большой дальности С-400, фигурирующие в скандале с планируемой поставкой Турции, вызвавшей бурные возражения со стороны США.
Воздух-земля
Воздух-земля — ракетные средства поражения наземных и заглубленных целей, находящиеся на вооружении бомбардировочной и штурмовой авиации. По предназначению и дальности классифицируются аналогично с ракетами земля-земля. По типам целей дополнительно выделяют противотанковые ракеты воздух-земля для ударов по вражеской бронетехнике и противорадиолокационные — для выведения из строя радиолокационных станций (РЛС).
Воздух-воздух
Ракеты воздух-воздух — вооружение российской истребительной авиации, созданное для уничтожения пилотируемых и беспилотных вражеских летательных аппаратов (ЛА).
По дальности бывают:
- малой — для удара по визуально обнаруженной пилотом цели;
- средней — для поражения цели на расстоянии до 100 километров;
- большой — для запуска на расстояние свыше 100 км.
Системы наведения при пусках ракет воздух-воздух используются радиокомандные (в ракетах СССР К-5), активные и полуактивные радиолокационные (АРЛС — в Р-37, Р-77 и ПРЛС — в Р-27), инфракрасные (в ракетах Р-60 и Р-73).
Ракета воздух-воздух Р-27
Воздух-поверхность
Ракетами воздух-поверхность, которые не относятся к виду воздух-земля, является противокорабельное оружие.
Оно характеризуется:
- сравнительно большой массой;
- фугасным типом поражающего средства;
- радиолокационным наведением.
Двигатели
Ранние варианты МБР использовали жидкостные ракетные двигатели и требовали длительной заправки компонентами ракетного топлива непосредственно перед запуском. Подготовка к запуску могла длиться несколько часов, а время поддержания боевой готовности было весьма незначительным. В случае применения криогенных компонентов (Р-7) оборудование стартового комплекса было весьма громоздким. Всё это значительно ограничивало стратегическую ценность таких ракет. Современные МБР используют твердотопливные ракетные двигатели или жидкостные ракетные двигатели на высококипящих компонентах с ампулизированной заправкой. Такие ракеты поступают с завода в транспортно-пусковых контейнерах. Это позволяет им храниться в готовом к старту состоянии в течение всего срока службы. Жидкостные ракеты доставляют на стартовый комплекс в незаправленном состоянии. Заправка производится после установки ТПК с ракетой в ПУ, после чего ракета может находиться в боеготовом состоянии многие месяцы и годы. Подготовка к запуску занимает обычно не более нескольких минут и производятся дистанционно, с удалённого командного пункта, по кабельным или радиоканалам. Так же осуществляются периодические проверки систем ракеты и ПУ.
Современные МБР обычно имеют разнообразные средства преодоления ПРО противника. Они могут включать в себя маневрирующие боевые блоки, средства постановки радиолокационных помех, ложные цели и др.
Ракета с ядерной боеголовкой
Не сложно догадаться, что самой страшной ракетой является именно та, которая способна нести ядерный заряд. Тем не менее, многие ракеты оснащены этой возможностью в виде опции. В конфликтах, где применение ядерного оружия нецелесообразно, они используются для доставки неядерного боевого заряда. Именно такие боеголовки, как правило, и называются обычными.
А еще у них есть такое применение: Дональд Трамп предлагает бороться с ураганами ядерными бомбами
Более подробно останавливаться на этом пункте не стоит, так как все отличия видны из названия. Тем не менее, ядерное оружие является большой и интересной темой, о которой мы еще поговорим в ближайшее время.
Межконтинентальные ракеты
Как правило, для доставки ядерной боеголовки предназначаются межконтинентальные ракеты. Именно они являются основой того “ядерного кулака” или “ядерной дубины”, о которой говорят многие. Конечно, доставить ядерную бомбу к территории противника можно и на самолете, но при современном уровне развития ПВО это становится не такой простой задачей. Именно поэтому проще пользоваться межконтинентальными ракетами.
Несмотря на это, ядерным зарядом могут оснащаться даже ракеты малой дальности. Правда, на практике это не имеет большого смысла, так как применяются такие ракеты, как правило, в региональных конфликтах.
По дальности полета ракеты делятся на ”ракеты малой дальности”, предназначенные для поражения целей на расстоянии 500-1000 км, ”ракеты средней дальности”, способные нести свой смертоносный груз на расстояние 1000-5500 км и ”межконтинентальные ракеты”, которые могут и через океан перелететь.
Что это, собственно, за нагрузка?
Баллистическая ракета состоит из двух главных частей — разгоняющей части и другой, ради которой затеян разгон. Разгоняющая часть — это пара или тройка больших многотонных ступеней, под завязку набитых топливом и с двигателями снизу. Они придают необходимую скорость и направление движению другой главной части ракеты — головной. Разгонные ступени, сменяя друг друга в эстафете пуска, ускоряют эту головную часть в направлении района ее будущего падения.
Головная часть ракеты — это сложный груз из многих элементов. Он содержит боеголовку (одну или несколько), платформу, на которой эти боеголовки размещены вместе со всем остальным хозяйством (вроде средств обмана радаров и противоракет противника), и обтекатель. Еще в головной части есть топливо и сжатые газы. Вся головная часть к цели не полетит. Она, как ранее и сама баллистическая ракета, разделится на много элементов и просто перестанет существовать как одно целое. Обтекатель от нее отделится еще неподалеку от района пуска, при работе второй ступени, и где-то там по дороге и упадет. Платформа развалится при входе в воздух района падения. Сквозь атмосферу до цели дойдут элементы только одного типа. Боеголовки.
Вблизи боеголовка выглядит как вытянутый конус длиною метр или полтора, в основании толщиной с туловище человека. Нос конуса заостренный либо немного затупленный. Конус этот — специальный летательный аппарат, задача которого — доставка оружия к цели. Мы вернемся к боеголовкам позже и познакомимся с ними ближе.
Голова «Миротворца»
На снимках — ступени разведения американской тяжелой МБР LGM0118A Peacekeeper, также известной как MX. Ракета была оснащена десятью разделяющимися боеголовками по 300 кт. Ракета снята с вооружения в 2005 году.
Тянуть или толкать?
В ракете все боеголовки расположены на так называемой ступени разведения, или в «автобусе». Почему автобус? Потому что, освободившись сначала от обтекателя, а затем от последней разгонной ступени, ступень разведения развозит боеголовки, как пассажиров по заданным остановкам, по своим траекториям, по которым смертоносные конусы разойдутся к своим целям.
Еще «автобус» называют боевой ступенью, потому что ее работа определяет точность наведения боеголовки в точку цели, а значит, и боевую эффективность. Ступень разведения и ее работа — один из самых больших секретов в ракете. Но мы все же слегка, схематично, взглянем на эту таинственную ступень и на ее непростой танец в космосе.
Ступень разведения имеет разные формы. Чаще всего она похожа на круглый пенек или на широкий каравай хлеба, на котором сверху установлены боеголовки остриями вперед, каждая на своем пружинном толкателе. Боеголовки заранее расположены под точными углами отделения (на ракетной базе, вручную, с помощью теодолитов) и смотрят в разные стороны, как пучок морковок, как иголки у ежика. Ощетинившаяся боеголовками платформа занимает в полете заданное, гиростабилизированное в пространстве положение. И в нужные моменты с нее поодиночке выталкиваются боеголовки. Выталкиваются сразу после завершения разгона и отделения от последней разгонной ступени. Пока (мало ли что?) не сбили противоракетным оружием весь этот неразведенный улей или не отказало что-либо на борту ступени разведения.
Но так было раньше, на заре разделяющихся головных частей. Сейчас разведение представляет собой совсем другую картину. Если раньше боеголовки «торчали» вперед, то теперь впереди по ходу находится сама ступень, а боеголовки висят снизу, вершинами назад, перевернутые, как летучие мыши. Сам «автобус» в некоторых ракетах тоже лежит в перевернутом состоянии, в специальной выемке в верхней ступени ракеты. Теперь после отделения ступень разведения не толкает, а тащит боеголовки за собой. Причем тащит, упираясь крестообразно расставленными четырьмя «лапами», развернутыми впереди. На концах этих металлических лап находятся направленные назад тяговые сопла ступени разведения. После отделения от разгонной ступени «автобус» очень точно, прецизионно выставляет свое движение в начинающемся космосе с помощью собственной мощной системы наведения. Сам занимает точную тропу очередной боеголовки — ее индивидуальную тропу.
Затем размыкаются специальные безынерционные замки, державшие очередную отделяемую боеголовку. И даже не отделенная, а просто теперь уже ничем не связанная со ступенью боеголовка остается неподвижно висеть здесь же, в полной невесомости. Начались и потекли мгновенья ее собственного полета. Словно одна отдельная ягода рядом с гроздью винограда с другими виноградинами-боеголовками, еще не сорванными со ступени процессом разведения.
Огненная десятка
К-551 «Владимир Мономах» — российская атомная подводная лодка стратегического назначения (проект 955 «Борей»), вооруженная 16 твердотопливными МБР «Булава» с десятью разделяющимися боевыми блоками.
Деликатные движения
Теперь задача ступени — отползти от боеголовки как можно деликатнее, не нарушив ее точно выставленного (нацеленного) движения газовыми струями своих сопел. Если сверхзвуковая струя сопла попадет по отделенной боеголовке, то неминуемо внесет свою добавку в параметры ее движения. За последующее время полета (а это полчаса — минут пятьдесят, в зависимости от дальности пуска) боеголовка продрейфует от этого выхлопного «шлепка» струи на полкилометра-километр вбок от цели, а то и дальше. Продрейфует без преград: там же космос, шлепнули — поплыла, ничем не удерживаясь. Но разве километр вбок — это точность сегодня?
Чтобы избежать таких эффектов, как раз и нужны разнесенные в стороны четыре верхние «лапы» с двигателями. Ступень как бы подтягивается на них вперед, чтобы струи выхлопов шли по сторонам и не могли зацепить отделяемую брюшком ступени боеголовку. Вся тяга разделена между четырьмя соплами, что снижает мощность каждой отдельной струи. Есть и другие особенности. Например, если на бубликообразной ступени разведения (с пустотой посередине — этим отверстием она надета на разгонную ступень ракеты, как обручальное кольцо на палец) ракеты «Трайдент-II D5» система управления определяет, что отделенная боеголовка все же попадает под выхлоп одного из сопел, то система управления это сопло отключает. Делает «тишину» над боеголовкой.
Ступень нежно, как мать от колыбельки уснувшего дитяти, боясь нарушить его покой, на цыпочках отходит в пространстве на трех оставшихся соплах в режиме малой тяги, а боеголовка остается на прицельной траектории. Затем «бублик» ступени с крестовиной тяговых сопел проворачивается вокруг оси, чтобы боеголовка вышла из-под зоны факела выключенного сопла. Теперь ступень отходит от оставляемой боеголовки уже на всех четырех соплах, но пока тоже на малом газу. При достижении достаточного расстояния включается основная тяга, и ступень энергично перемещается в область прицельной траектории следующей боеголовки. Там расчетно тормозится и снова очень точно устанавливает параметры своего движения, после чего отделяет от себя очередную боеголовку. И так — пока не высадит каждую боеголовку на ее траекторию. Процесс этот быстр, гораздо быстрее, чем вы читаете о нем. За полторы-две минуты боевая ступень разводит десяток боеголовок.
Бездны математики
Сказанного выше вполне достаточно для понимания, как начинается собственный путь боеголовки. Но если приоткрыть дверь чуть шире и бросить взгляд чуть глубже, можно заметить, что сегодня разворот в пространстве ступени разведения, несущей боеголовки, — это область применения кватернионного исчисления, где бортовая система ориентации обрабатывает измеряемые параметры своего движения с непрерывным построением на борту кватерниона ориентации. Кватернион — это такое комплексное число (над полем комплексных чисел лежит плоское тело кватернионов, как сказали бы математики на своем точном языке определений). Но не с обычными двумя частями, действительной и мнимой, а с одной действительной и тремя мнимыми. Итого у кватерниона четыре части, о чем, собственно, и говорит латинский корень quatro.
Ступень разведения выполняет свою работу довольно низко, сразу после выключения разгонных ступеней. То есть на высоте 100−150 км. А там еще сказывается влияние гравитационных аномалий поверхности Земли, разнородностей в ровном поле тяготения, окружающем Землю. Откуда они? Из неровностей рельефа, горных систем, залегания пород разной плотности, океанических впадин. Гравитационные аномалии либо притягивают к себе ступень добавочным притяжением, либо, наоборот, слегка отпускают ее от Земли.
В таких неоднородностях, сложной ряби местного гравитационного поля, ступень разведения должна расставить боеголовки с прецизионной точностью. Для этого пришлось создать более детальную карту гравитационного поля Земли. «Излагать» особенности реального поля лучше в системах дифференциальных уравнений, описывающих точное баллистическое движение. Это большие, емкие (для включения подробностей) системы из нескольких тысяч дифференциальных уравнений, с несколькими десятками тысяч чисел-констант. А само гравитационное поле на низких высотах, в непосредственной околоземной области, рассматривают как совместное притяжение нескольких сотен точечных масс разного «веса», расположенных около центра Земли в определенном порядке. Так достигается более точное моделирование реального поля тяготения Земли на трассе полета ракеты. И более точная работа с ним системы управления полетом. А еще… но полно! — не будем заглядывать дальше и закроем дверь; нам вполне хватит и сказанного.
Полет без боеголовок
Ступень разведения, разогнанная ракетой в сторону того же географического района, куда должны упасть боеголовки, продолжает свой полет вместе с ними. Ведь отстать она не может, да и зачем? После разведения боеголовок ступень срочно занимается другими делами. Она отходит в сторону от боеголовок, заранее зная, что будет лететь немного не так, как боеголовки, и не желая их потревожить. Все свои дальнейшие действия ступень разведения тоже посвящает боеголовкам. Это материнское желание всячески оберегать полет своих «деток» продолжается всю ее оставшуюся недолгую жизнь.
Недолгую, но насыщенную.
Космос ненадолго
Полезная нагрузка межконтинентальной баллистической ракеты большую часть полета проводит в режиме космического объекта, поднимаясь на высоту, в три раза больше высоты МКС. Огромной длины траектория должна быть просчитана с особой точностью.
После отделенных боеголовок наступает черед других подопечных. В стороны от ступени начинают разлетаться самые забавные штуковины. Словно фокусник, выпускает она в пространство множество надувающихся воздушных шариков, какие-то металлические штучки, напоминающие раскрытые ножницы, и предметы всяких прочих форм. Прочные воздушные шарики ярко сверкают в космическом солнце ртутным блеском металлизированной поверхности. Они довольно большие, некоторые по форме напоминают боеголовки, летящие неподалеку. Их поверхность, покрытая алюминиевым напылением, отражает радиосигнал радара издали почти так же, как и корпус боеголовки. Наземные радары противника воспримут эти надувные боеголовки наравне с реальными. Разумеется, в первые же мгновения входа в атмосферу эти шарики отстанут и немедленно лопнут. Но до этого они будут отвлекать на себя и загружать вычислительные мощности наземных радаров — и дальнего обнаружения, и наведения противоракетных комплексов. На языке перехватчиков баллистических ракет это называется «осложнять текущую баллистическую обстановку». А всё небесное воинство, неумолимо движущееся к району падения, включая боевые блоки настоящие и ложные, надувные шарики, дипольные и уголковые отражатели, вся эта разношерстная стая называется «множественные баллистические цели в осложненной баллистической обстановке».
Металлические ножницы раскрываются и становятся электрическими дипольными отражателями — их множество, и они хорошо отражают радиосигнал ощупывающего их луча радара дальнего противоракетного обнаружения. Вместо десяти искомых жирных уток радар видит огромную размытую стаю маленьких воробьев, в которой трудно что-то разобрать. Устройства всяких форм и размеров отражают разные длины волн.
Кроме всей этой мишуры, ступень теоретически может сама испускать радиосигналы, которые мешают наводиться противоракетам противника. Или отвлекать их на себя. В конце концов, мало ли чем она может быть занята — ведь летит целая ступень, большая и сложная, почему бы не нагрузить ее хорошей сольной программой?
Дом для «Булавы»
Подводные лодки проекта 955 «Борей» — серия российских атомных подводных лодок класса «ракетный подводный крейсер стратегического назначения» четвертого поколения. Первоначально проект создавался под ракету «Барк», ей на смену пришла «Булава».
Показатели
Точность стрельбы МБР (круговое вероятное отклонение, КВО) является очень важной характеристикой, так как повышение точности в 2 раза позволяет использовать в 5 раз менее мощный боезаряд. Точность ограничивается точностью навигационной системы и имеющейся геофизической информацией. Многие правительственные программы, такие как GPS, ГЛОНАСС, спутники дистанционного зондирования Земли, используются в том числе для повышения точности навигационной информации. Самые точные баллистические ракеты имеют КВО менее 100 метров, даже при межконтинентальной дальности.
Максимальная дальность полёта МБР — 16 тыс. км, обеспечивая практически глобальную досягаемость для ракетного удара вне зависимости от расположения пусковой установки. Стартовая масса — 16—200 т, полезная нагрузка — до 10 тонн, апогей траектории — до 1000 км.
Спуск к цели происходит на скорости более 6 км/с. Полётное время МБР наземного базирования от России до США лежит в диапазоне 25—30 мин. Для ракет подводного базирования полётное время может быть значительно меньше, до 12 мин.
Орбитальные ракеты (Р-36орб) имеют неограниченную дальность, но они сняты с вооружения по договору ОСВ-2.
Запуск ракеты «Днепр»
Какое топливо используется в ракете
При выборе типа ракетного топлива больше всего всего внимания уделяется особенностям использования ракеты и тому, каким двигателем ее планируется оснастить. Грубо можно сказать, что все типы топлива делятся в основном по форме выпуска, удельной температуре сгорания и КПД. Среди основных типов двигателей выделяется твердотопливные, жидкостные, комбинированные и прямоточные воздушно-реактивные.
В качестве самого простого твердого топлива можно привести в пример порох, которым заправляются фейерверки. При сгорании он выделяет не очень большое количество энергии, но его достаточно для вывода на высоту нескольких десятков метров красочного заряда. В начале статьи я говорил о китайских стрелах XI века. Они являются еще одним примером твердотопливных ракет.
Для боевых ракет твердое топливо производится по иной технологии. Обычно им является алюминиевый порошок. Главным плюсом таких ракет является легкость их хранения и возможность работы с ними, когда они заправлены. Кроме этого, такое топливо стоит относительно недорого.
Минусом твердотопливных двигателей является слабый потенциал отклонения вектора тяги. Поэтому для управления в таких ракетах часто используются дополнительные небольшие двигатели на жидком углеводородном топливе. Такая гибридная связка позволяет более полно использовать потенциал каждого источника энергии.
Использование именно комбинированных систем хорошо тем, что позволяет уйти от сложной системы заправки ракеты непосредственно перед запуском и необходимости откачки большого количества топлива в случае его отмены.
Отдельно стоит отметить даже не криогенный двигатель (заправляется сжиженными газами при очень низкой температуре) и не атомный, про который много говорят в последнее время, а прямоточный воздушно-реактивный. Такая система работает за счет создания давления воздуха в двигателе при движении ракеты на большой скорости. В самом двигателе производится впрыск топлива в камеру сгорания и смесь поджигается, создавая давление больше, чем на входе. Такие ракеты способны летать со скоростью, которая в несколько раз превышает скорость звука, но для запуска двигателя нужно давление, которое создается на скорости чуть выше одной скорости звука. Именно поэтому для запуска должны быть использованы вспомогательные средства.
Используют ли баллистические ракеты в освоении космоса?
Да, используют. Космическая ракета совершает полет по баллистической траектории. С этой точки зрения полет межконтинентальной баллистической ракеты принципиально не отличается от полета космической ракеты. Это делает возможным создание универсальных ракет.
В ракетных войсках стратегического назначения (РВСН) существует класс ракет, которые создавались как универсальные. Это ракеты НПО «Машиностроение» класса УР-100. Такие ракеты предполагалось использовать как ракеты-носители для выведения на орбиту искусственных спутников военного назначения, а также в системе ПРО.
Целый ряд ракет стратегического назначения, которые находились на боевом дежурстве, используют как ракеты-носители для вывода на орбиты искусственных спутников Земли. На базе ракеты РТ-2ПМ созданы ракеты-носители «Старт-1» и «Старт», на базе ракеты Р-36М2 созданы ракеты-носители «Днепр», на базе ракеты УР-100НУ — «Рокот».
Системы наведения ракет
В наше время почти все ракеты имеют систему наведения. Думаю, не стоит объяснять, что попасть по цели, которая находится на расстоянии сотен или тысяч километров, без точной системы наведения просто невозможно.
Систем наведения и их комбинаций очень много. Только среди основных можно отметить систему командного наведения, электродистанционное наведение, наведение по наземным ориентирам, геофизическое наведение, наведение по лучу, спутниковое наведение, а также некоторые другие системы и их сочетание.
Система электродистанционного наведения имеет много общего с системой на радиоуправлении, но она обладает более высокой устойчивостью к помехам, в том числе, намеренно создаваемым противником. В случае такого управления команды передаются по проводу, который направляет в ракету все данные, необходимые для поражения цели. Передача таким способом возможна только до момента запуска.
Система наведения по наземным ориентирам состоит из высокочувствительных высотомеров, позволяющих отслеживать положение ракеты на местности и ее рельеф. Такая система применяется исключительно в крылатых ракетах ввиду их особенностей, о которых мы поговорим чуть ниже.
Система геофизического наведения основана на постоянном сопоставлении угла положения ракеты относительно горизонта и звезд с эталонными значениями, заложенными в нее перед стартом. Внутренняя система управления при малейшем отклонении возвращает ракету на курс.
При наведении по лучу ракете нужен вспомогательный источник целеуказания. Как правило, им является корабль или самолет. Внешний радар определяет цель и производит ее отслеживание, если она движется. Ракета ориентируется на этот сигнал и сама наводится на него.
Название системы спутникового наведения говорит само за себя. Наведение на цель производится по координатам системы глобального позиционирования. В основном такая система широко используется в тяжелых межконтинентальных ракетах, которые наводятся на статичные наземные цели.
Кроме приведенных примеров, есть также системы лазерного, инерциального, радиочастотного наведения и другие. Также командное управление может обеспечивать связь между командным пунктом и системой наведения. Это позволит изменить цель или вовсе отменить удар уже после запуска.
Благодаря такому широкому перечню систем наведения, современные ракеты могут не только взорвать что угодно и где угодно, но и обеспечить точность, которая иногда исчисляется десятками сантиметров.
Современные ракеты такие точные, что их даже не надо взрывать. С расстояния в 500 километров ей можно просто застрелить человека. — Руслан Белый. StandUp комик.
Ракетные комплексы и установки
В таблице приведены характеристики ракетных комплексов, стоящих на вооружении в различных странах
Страна | Россия/СССР | Россия | США | Китай | Россия | Россия |
Принята на вооружение, год | 1978 | 2007 | 1987 | 2006 | 2000 | 2013 |
Базирование | шахтное | морское | морское | морское | шахтное/мобильное | морское |
Дальность полета, км | 16000 | 11547 | 11300 | 11200 | 11000 | 10000 |
Точность, м | 300 | 500 | 120 | 300 | 200 | 350 |
Как видно из таблицы точность МБР последнего поколения возросла, кроме того свои баллистические ракеты появились у Франции и Китая. Данный факт свидетельствует о том, что на мировой политической и военной арене появились новые игроки, способные повлиять на стратегический ядерный баланс.
Подводя итог можно отметить, что межконтинентальные баллистические ракеты являются основным средством ядерного сдерживания.
Наличие их на вооружении ведущих стран мира позволяет сохранить паритет в возможном глобальном конфликте (в третьей мировой войне не будет ни победителей ни проигравших) и остудить горячие головы политиков.
Космический ракетный комплекс «ЗЕНИТ»
Баллистическими ракетами (в 50-х годах использовался термин «баллистические снаряды») называют такие ракеты, у которых траектория полета (за исключением начального участка, который ракета проходит с работающим двигателем) представляет собой траекторию свободно брошенного тела. После выключения двигателя ракета не управляется и движется подобно обычному артиллерийскому снаряду, а ее траектория зависит только от силы тяжести и аэродинамических сил и представляет собой так называемую «баллистическую кривую».
Баллистические ракеты обычно запускаются вертикально вверх или под углами, близкими к 90 градусам, что делает необходимым применение системы управления для вывода ракеты на расчетную траекторию поражения цели.
Чтобы баллистическая ракета могла пролететь сотни и тысячи километров, ей надо сообщить очень высокую скорость полета. Однако и при этом условии получить большую дальность было бы невозможно, если бы ракета совершала полет в плотных слоях атмосферы. Сопротивление воздуха быстро погасило бы ее скорость. Поэтому стратегические баллистические ракеты основной участок своей траектории проходят на очень большой высоте, где плотность воздуха мала, т. е. практически в безвоздушном пространстве.
Вертикальный запуск ракеты позволяет сократить время ее движения в плотных слоях атмосферы и тем самым уменьшить расход энергии на преодоление силы сопротивления воздуха. Через несколько секунд вертикального подъема траектория ракеты искривляется в сторону цели и переходит в наклонную. За счет работы двигателя скорость ракеты непрерывно возрастает вплоть до полного израсходования топлива или выключения (отсечки) двигателя. С этого момента и до падения на землю ракета движется по траектории свободно брошенного тела. Таким образом, траектория баллистической ракеты имеет два участка: активный — от начала взлета до прекращения работы двигателей и пассивный — от момента прекращения работы двигателей до достижения поверхности земли.
С какой скоростью летают ракеты?
Прежде, чем ответить на этот вопрос, давайте поймем в чем ее измеряют. Ракеты летают чертовски быстро и говорить о привычных км/ч или м/сек не приходится. Скорость многих современных летательных аппаратов измеряют в Махах.
Непривычная величина измерения скорости появилась не просто так. Название “число Маха” и обозначение “М” предложил в 1929 году Якоб Аккерет. Оно выражается как отношение скорости движения потока или тела к скорости распространения звука в среде, в которой происходит движение. Если учесть, что скорость распространения звуковой волны у поверхности земли примерно равна 331 м/сек (около 1200 км/ч), не трудно догадаться, что единицу можно получить только если поделить 331 на 331. То есть, скорость один Мах (М) у поверхности земли составляет примерно 1200 км/ч. С набором высоты скорость распространения звуковой волны падает из-за уменьшения плотности воздуха.
Таким образом, один Мах у поверхности земли и на высоте 20 000 метров отличается примерно на 10 процентов. Стало быть и скорость тела, которую оно должно развить, чтобы получить число Маха, уменьшается. Упрощенно среди обывателей принято называть число Маха скоростью звука. Если такое упрощение не применяется в точных расчетах, его вполне можно допустить и считать примерно равным величине у поверхности земли.
Такую скорость не так легко представить, но крылатые ракеты могут летать на скорости до 5 Махов (примерно 7 000 км/ч в зависимости от высоты). Баллистические ракеты и вовсе способны развивать скорость до 23 Махов. Именно такую скорость на испытаниях показал ракетный комплекс Авангард. Получается, что на высоте 20 000 метров, это будет около 25 000 км/ч.
Конечно, такая скорость достигается на заключительной стадии полета при спуске, но представить, что рукотворный объект может перемещаться с такой скоростью, все равно сложно.
Как видим, ракеты перестали быть просто бомбой, которую кидают далеко вперед. Это настоящее произведение инженерного искусства. Вот только хотелось бы, чтобы эти разработки шли в мирное русло, а не предназначались для разрушения.
7 российских баллистических ракет, которых боятся наши противники (23 фото)
Баллистические ракеты были и остаются надежным щитом национальной безопасности России. Щитом, готовым, в случае необходимости, обернуться мечом.
Р-36М «Сатана»
Разработчик: КБ «Южное» Длина: 33, 65 м Диаметр: 3 м Стартовый вес: 208 300 кг Дальность полета: 16000 км Советский стратегический ракетный комплекс третьего поколения, с тяжёлой двухступенчатой жидкостной, ампулизированной межконтинентальной баллистической ракетой 15А14 для размещения в шахтной пусковой установке 15П714 повышенной защищённости типа ОС.
«Сатаной» советский стратегический ракетный комплекс назвали американцы. На момент первого испытания в 1973 году эта ракета стала самой мощной баллистической системой, которая когда-либо была разработана.
Ни одна система ПРО неспособна была противостоять SS-18, радиус поражения которой составлял аж 16 тысяч метров. После создания Р-36М, Советский Союз мог не беспокоится «гонки вооружений».
Однако в 1980-ые «Сатана» был модифицирован, и в 1988 году на вооружение Советской армии поступила новая версия SS-18 — Р-36М2 «Воевода», против которой ничего сделать не могут сделать и современные американские ПРО.
РТ-2ПМ2. «Тополь-М»
0 Разработчик: ЦКБ машиностроения Длина: 22,7 м Диаметр: 1,86 м Стартовый вес: 47,1 т Дальность полета: 11000 км
0 Ракета РТ-2ПМ2 выполнена в виде трехступенчатой ракеты с мощной смесевой твердотопливной энергетической установкой и стеклопластиковым корпусом. Испытания ракеты начались в 1994 году. Первый пуск был проведён из шахтной пусковой установки на космодроме Плесецк 20 декабря 1994 года. В 1997 году, после четырёх успешных пусков начато серийное производство этих ракет.
0 Акт о принятии на вооружение РВСН РФ межконтинентальной баллистической ракеты «Тополь-М» был утверждён Госкомиссией 28 апреля 2000 года. По состоянию на конец 2012 года, на боевом дежурстве находилось 60 ракет «Тополь-М» шахтного и 18 мобильного базирования. Все ракеты шахтного базирования стоят на боевом дежурстве в Таманской ракетной дивизии (Светлый, Саратовская область).
PC-24 «Ярс»
0 Разработчик: МИТ
Длина: 23 м
Диаметр: 2 м
Дальность полета: 11000 км
0 Первый запуск ракеты состоялся в 2007 году. В отличие от Тополя-М обладает разделяющимися боевыми частями. Помимо боевых блоков, Ярс также несет комплекс средств прорыва противоракетной обороны, что затрудняет противнику ее обнаружение и перехват.
0 Такое нововведение делает РС-24 наиболее удачной боевой ракетой в условиях развертывания глобальной американской системы ПРО.
СРК УР-100Н УТТХ с ракетой 15А35
Разработчик: ЦКБ машиностроения Длина: 24,3 м Диаметр: 2,5 м Стартовый вес: 105,6 т Дальность полета: 10000 км
Межконтинентальная баллистическая жидкостная ракета 15А30 (УР-100Н) третьего поколения с разделяющейся головной частью индивидуального наведения (РГЧ ИН) была разработана в ЦКБ машиностроения под руководством В.Н.Челомея.
Летно-конструкторские испытания МБР 15А30 проводились на полигоне Байконур (председатель госкомиссии — генерал-лейтенант Е.Б. Волков). Первый пуск МБР 15А30 состоялся 9 апреля 1973г. По официальным данным, на июль 2009 г. РВСН РФ имели 70 развернутых МБР 15А35: 1. 60-я ракетная дивизия (г. Татищево), 41 УР-100Н УТТХ 2. 28-я гвардейская ракетная дивизия (г. Козельск), 29 УР-100Н УТТХ.
15Ж60 «Молодец»
Разработчик: КБ «Южное» Длина: 22,6 м Диаметр: 2,4 м Стартовый вес: 104,5 т Дальность полета: 10000 км
РТ-23 УТТХ «Молодец» — стратегические ракетные комплексы с твёрдотопливными трёхступенчатыми межконтинентальными баллистическими ракетами 15Ж61 и 15Ж60, подвижного железнодорожного и стационарного шахтного базирования, соответственно
Явился дальнейшим развитием комплекса РТ-23. Были приняты на вооружение в 1987 году. На внешней поверхности обтекателя размещаются аэродинамические рули, позволяющие управлять ракетой по крену на участках работы первой и второй ступеней. После прохождения плотных слоев атмосферы обтекатель сбрасывается.
Р-30 «Булава»
Разработчик: МИТ Длина: 11,5 м Диаметр: 2 м Стартовый вес: 36,8 т. Дальность полета: 9300 км
Российская твёрдотопливная баллистическая ракета комплекса Д-30 для размещения на подводных лодках проекта 955. Первый запуск «Булавы» состоялся в 2005 году. Отечественные авторы часто критикуют разрабатываемый ракетный комплекс «Булава» за достаточно большую долю неудачных испытаний
Как утверждают критики, «Булава» появилась благодаря банальному желанию России сэкономить: стремление страны сократить расходы на разработку за счет унификации «Булавы» с сухопутными ракетами сделало ее производство дешевле, чем обычно.
Х-101/Х-102
Разработчик: МКБ «Радуга» Длина: 7,45 м Диаметр: 742 мм Размах крыла: 3 м Стартовый вес: 2200-2400 Дальность полета: 5000-5500 км
Стратегическая крылатая ракета нового поколения. Её корпус представляет собой низкоплан, однако имеет сплющенное поперечное сечение и боковые поверхности. Боевая часть ракеты весом в 400 кг может поражать сразу 2 цели на расстоянии 100 км друг от друга.
Первая цель будет поражена боеприпасом, спускающимся на парашюте, а вторая непосредственно при попадании ракеты.При дальности полета на 5000 км показатель кругового вероятного отклонения (КВО) составляет всего 5-6 метров, а при дальности 10 000 км не превышает 10 м.
Что из себя представляет крылатая ракета
Крылатые ракеты, готовые к запуску
Крылатая ракета — это беспилотный летательный аппарат. По своей структуре и истории создания он ближе к авиации, нежели к ракетостроению. Устаревшее название — самолет-снаряд — оно вышло из употребления, поскольку так называли и планирующие авиабомбы.
Не следует связывать термин «крылатая ракета» с английским cruise missile. К последнему относятся только программно-управляемые снаряды, сохраняющие постоянную скорость большую часть полета.
С учетом специфики строения и применения крылатых ракет выделяют следующие преимущества и недостатки таких снарядов:
- программируемый курс полета, что позволяет создавать комбинированную траекторию и обходить противоракетную оборону противника;
- движение на малой высоте с учетом рельефа делает снаряд менее заметным для радиолокационного обнаружения;
- высокая точность современных крылатых ракет сочетается с высокой стоимостью их изготовления;
- снаряды летят с относительно небольшой скоростью — примерно 1150 км/ч;
- поражающая мощность невысокая, исключение — ядерные боеприпасы.
История разработки крылатых ракет связана с появлением авиации. Еще до Первой мировой войны возникла идея летающей бомбы. Необходимые для ее реализации технологии были вскоре разработаны:
- в 1913 комплекс радиоуправления беспилотным летательным аппаратом изобрел школьный учитель физики Вирт;
- в 1914 был успешно опробован гироскопический автопилот Э. Сперри, позволявший удерживать самолет на заданном курсе без участия пилота.
На фоне подобных технологий сразу в нескольких странах велись разработки летающих снарядов. Большинство из них велись параллельно с работой над автопилотированием и радиоуправлением. Идея оснастить их крыльями принадлежит Ф. А. Цандеру. Именно он в 1924 году опубликовал рассказ «Перелеты на другие планеты».
Первым успешным серийным производством подобных летательных аппаратов принято считать английскую радиоуправляемую воздушную мишень Queen. Первые образцы были созданы в 1931, в 1935 запущено серийное производство Queen Bee (пчелиная матка). Кстати, именно с этого момента беспилотники получили неофициальное название Drone — трутень.
Основной задачей первых беспилотников была разведка. Для боевого применения не хватало точности и надежности, что при высокой стоимости разработки делало производство нецелесообразным.
Несмотря на это, исследования и испытания в данном направлении продолжались, особенно с началом Второй мировой войны.
Первой классической крылатой ракетой принято считать немецкую «Фау-1». Ее испытания прошли 21 декабря 1942, а боевое применение она получила к концу войны против Великобритании.
Первые испытания и применения показали низкую точность снаряда. Из-за этого планировалось использовать их вместе с пилотом, который на заключительном этапе должен был покинуть снаряд с парашютом.
Как и в случае с баллистическими ракетами, разработки немецких ученых перешли к победителям. Дальнейшую эстафету по проектированию современных крылатых ракет переняли СССР и США. Планировалось использовать их в качестве ядерных боеприпасов. Однако разработка таких снарядов была остановлена в связи с экономической нецелесообразностью и успехом развития баллистических ракет.
Характеристики крылатых ракет России/СССР и США. Инфографика
Согласно Договору о ракетах средней и малой дальности (ДРСМД), подписанному в 1987 году главами СССР и США Михаилом Горбачевым и Рональдом Рейганом, страны обязались уничтожить все комплексы баллистических и крылатых ракет наземного базирования средней (1000–5500 км) и меньшей (500-1000 км) дальности, а также не иметь таких ракет в будущем.
Однако спустя 32 года США объявили о своем решении выйти из договора, ограничивающего развертывание ракет средней и меньшей дальности. 2 февраля 2019 года американцы прекратили выполнять свои обязательства в рамках ДРСМД. Свое решение администрация Дональда Трампа объяснила нарушением его положений Москвой, обвинив ее в испытании и развертывании запрещенной договором ракеты SSC-8 (в российской классификации — 9M729). Хотя, по словам экспертов, главной причиной расторжения договора стало наращивание военного потенциала Китаем, в том числе создание им ракет малой и средней дальности.
Россия официально вышла из Договора о ликвидации ракет средней и меньшей дальности 3 июля. Президент РФ Владимир Путин подписал закон, согласно которому возобновление участия в этом договоре является прерогативой главы государства.
После прекращения действия договора США впервые испытали крылатую ракету 18 августа. Крылатая ракета среднего радиуса действия наземного базирования «Томагавк» (Tomahawk) была запущена на острове Сан-Николас в штате Калифорния. Новый вариант ракеты «Томагавк» имеет неядерную боевую часть. Дальность модификации Block IV составляет 1,6 тыс. км. Как утверждает производитель — корпорация Raytheon — ракета способна часами кружить в воздухе над целью, «моментально менять курс по команде и наносить удар с высокой точностью» и может быть перепрограммирована в полете с помощью устройства спутниковой связи. Ракета способна поразить одну из 15 заложенных в ее память целей или быть направлена в иную точку посредством глобальной навигационной системы GPS. Предполагается, что такие ракеты будут находиться на вооружении ВМС США до конца 2040-х годов.
В декабре 2019 года Соединенные Штаты продолжили испытания, но уже баллистической ракеты. 12 декабря на базе Военно-воздушных сил США Ванденберг в Калифорнии были проведены испытания баллистической ракеты наземного базирования средней дальности. По заявлениям Пентагона, США испытали «совершенно новую ракету», схожую с Pershing II.
Россия после выхода из договора также провела ряд испытаний крылатых ракет, в частности, по надводным и наземным целям были проведены стрельбы крылатыми ракетами «Оникс» и «Калибр». Крылатые ракеты «Калибр» являются одним из наиболее эффективных видов вооружения. После применения этих ракет в Сирии было принято решения об их модернизации. Ранее главной проблемой крылатых ракет была длительная загрузка информации о цели: для загрузки полетного задания требовалось столько времени, что цель могла просто уйти. Теперь, по словам министра обороны Сергея Шойгу, время загрузки уменьшилось кратно.
В начале 2019 года также стало известно, что в ответ на выход США из ДРСМД в России начали разработку крылатой ракеты «Калибр-М» с дальностью полета 4,5 тысячи километров. Создание новой ракеты включено в госпрограмму вооружения до 2027 года. Предполагается, что ракета, предназначенная для поражения наземных целей, будет передана флоту до конца действия программы. Она будет отличаться от предыдущих моделей не только дальностью стрельбы, но и габаритами, кроме того, будет способна нести как обычную, так и ядерную боевую часть. «Калибр-М» хотят установить на крупные надводные корабли, а также атомные подлодки.
Смотрите в инфографике АиФ.ru, какими характеристикам обладают советские, российские и американские крылатые ракеты.
Умная ракета
При первом упоминании крылатых ракет сразу же вспоминается американский «Томагавк». Существует огромное разнообразие модификаций наземного, воздушного и корабельного базирования. Если рассматривать RGM/UGM-109А, то дальность полета составляет 2500 километров при точности в 80 метров.
Естественно, это уже относительно устаревшая ракета, поэтому на замену активно приходят RGM/UGM-109 BlockIV. Данные относительно дальности полета расходятся – одни говорят о 1800 километров, в других этот показатель доходит до 2400. Однозначно ощутимо улучшение точности – 5-10 метров. Скорость – до 0,7 маха.
Не стоит забывать про одни из самых последних разработок — AGM-158 JASSM и AGM-158C LRASM. Первая предназначена для уничтожения наземный средств ПВО и других объектов, устанавливается на B-1 , B-2 и B-52H , F-16 и F/A-18 . LRASM же противокорабельная ракета. По состоянию на 2019 году у США всего 73 подобных ракеты.
AGM-158 JASSM уже прошли боевое испытание в Сирии. Как утверждает в США, во время атаки на аэродром Думеир все ракеты поразили цели. А вот российская сторона говорит о 12 сбитых ракетах из 19.
Ракета «Икс»
В том самом сентябре 1944-го ОКБ завода № 51 (он располагается в Москве, неподалеку от станции метро «Динамо») возглавил Владимир Челомей. К своим 30 годам он успел стать признанным специалистом в области теории колебаний, в частности колебаний в авиационных двигателях. Кроме теоретических работ, за плечами Челомея был и опыт практического конструирования. Еще в 1942 году, заведуя отделом в Центральном институте авиационного моторостроения, он разработал, построил и испытал пульсирующий воздушно-реактивный двигатель (ПуВРД). Двигателем такого же типа была оснащена немецкая V-1, а потому неудивительно, что возглавить работы по созданию советского самолета-снаряда, в частности на основе трофейных технологий, было предложено именно Челомею.
Военная обстановка требовала от конструкторов ОКБ работать в высочайшем темпе и в предельно сжатые сроки. Так, начав 27 сентября 1944 года выпуск чертежей отсеков планера, крыльев, двигательной установки и других узлов будущей ракеты, уже 16 октября ОКБ передало всю чертежную документацию заводам-изготовителям. Челомей присвоил самолету-снаряду название 10Х. Буква «икс» в индексе должна была подчеркивать необычность и секретность проекта.
ФАУ-1 V-1 (Фау-1, от нем.»оружие возмездия») — самолет-снаряд, состоявший на вооружении армии Германии в конце Второй мировой войны. Ракета Фау-1 была первым применявшимся в реальных боевых действиях беспилотным летательным аппаратом. Первое боевое использование — 13 июня 1944 года. Применялась для стрельбы по английской территории. Всего было выпущено около 10 000 снарядов, что повлекло за собой гибель более 6000 человек. За характерный звук ПуВРД V-1 получила у англичан прозвище «жужжащая бомба» (buzz bomb).
Наступил новый, 1945 год. К февралю советские войска пересекли границу Германии и заняли плацдармы на западном берегу Одера, а в это же время среди песчаных барханов в окрестностях узбекского города Джизак началась подготовка к испытанию первой советской крылатой ракеты. Сейчас уже почти невозможно установить, почему пуски 10Х было решено проводить именно в Средней Азии. То было время проб и ошибок: подобные испытания проводились впервые, и, разумеется, специально оборудованных полигонов для них попросту не существовало.
20 марта 1945 года в небо над пустыней поднялся бомбардировщик Пе-8 и произвел первый пуск «изделия 10». Испытания шли до середины лета. Всего самолеты Пе-8 и ЁР-2 «отстреляли» под Джизаком 70 самолетов-снарядов. В 1948 году 10Х была рекомендована для принятия на вооружение ВВС.
Пять самых смертоносных крылатых ракет России
1) Семейство управляемых ракет «Калибр»
Крылатые ракеты получили широкую известность после того, как с их помощью были нанесены удары по позициям террористов в Сирии. Работы по этому проекту велись в 1980-х годах на базе двух изделий: стратегической ядерной крылатой ракеты 3М10 с боевым радиусом 2500 км и комплекса противокорабельных ракет «Альфа» (ОКР «Бирюза»). Впервые ракеты «Калибр» были представлены на авиасалоне МАКС-1993. В НАТО получили кодификацию Sizzler («Испепелитель»). Радиус действия по морским целям – до 350 км, по береговым – до 2600 км.
2) Стратегическая крылатая ракета «воздух – земля» Х-101
Стратегическая крылатая ракета X-101 «воздух – земля» (Х-102 в исполнении с ядерной боеголовкой) с использованием технологий снижения радиолокационной заметности также получила первое боевое применение в Сирии, где с их помощью наносились удары по позициям террористов. Основные носители – бомбардировщики Ту-22 и Ту-160. Разработка изделия велась конструкторским бюро «Радуга» (1995–2013). Точные характеристики не разглашаются. По некоторым данным, дальность пуска достигает 9000 км, а круговое вероятное отклонение – 5 м на дальности 5500 км.
3) Противокорабельная ракета П-270 «Москит»
П-270 «Москит (по кодификации НАТО SS-N-22 Sunburn, буквально «Солнечный ожог») – противокорабельная ракета, разработанная в 1970-х годах в СССР. Способна уничтожать корабли водоизмещением до 20 тыс. т, в частности, из состава корабельных ударных группировок, десантных соединений, конвоев и одиночных кораблей. Дальность стрельбы – от 10 до 120 км по маловысотной траектории, 250 км – при высотном профиле полета. При подходе к цели «Москит» идет на высоте 7 м, двигаясь «над гребнем волн», а с целью прорыва ПВО ракета способна выполнять противозенитный маневр «змейка» с углами поворота до 60 градусов и перегрузкой более 10 g.
4) Стратегическая авиационная крылатая ракета Х-55
Ракета Х-55 – крылатая ракета для стратегических бомбардировщиков. После пуска идет на дозвуковой скорости с огибанием ландшафта местности, что делает ее перехват крайне сложным. Носителями Х-55 являются стратегические бомбардировщики Ту-95, Ту-160, при этом последний может нести до таких 12 ракет. Масса боевой части каждой из них – 200 кт, что более чем в 20 раз превышает мощность взрыва бомбы Little Boy, сброшенной США на Хиромиму в 1945 году.
5) П-700 «Гранит» – крылатая противокорабельная ракета дальнего действия
П-700 «Гранит» создавалась в первую очередь для борьбы с мощными корабельными группировками, в том числе с авиационными. При создании комплекса впервые был использован подход, основой которого является взаимная увязка трех элементов: средств целеуказания (в виде космических аппаратов), носителя и ПКР. Радиус действия – 550 км по комбинированной траектории. Эти ракеты стоят на вооружении в том числе и тяжелого авианесущего крейсера «Адмирал Кузнецов».
[spoiler title=»Источники»]
- https://fin-book.ru/chto-takoe-ballisticheskaya-raketa/
- https://aif.ru/dontknows/file/chto_takoe_ballisticheskaya_raketa
- https://gunsfriend.ru/lucsie-ballisticeskie-i-krylatye-rakety-mira-obsee-predstavlenie-i-istoria-razrabotki-top-10-opisania-i-harakteristiki-boevoe-primenenie/
- https://wiki2.org/ru/%D0%91%D0%B0%D0%BB%D0%BB%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%80%D0%B0%D0%BA%D0%B5%D1%82%D0%B0
- https://Hi-News.ru/eto-interesno/kakie-byvayut-rakety-i-chem-oni-otlichayutsya-eto-shedevr-inzhenernoj-mysli.html
- https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D0%B6%D0%BA%D0%BE%D0%BD%D1%82%D0%B8%D0%BD%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B0%D0%BB%D0%BB%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%80%D0%B0%D0%BA%D0%B5%D1%82%D0%B0
- https://WarBook.club/boepripasy/rakety/ballisticheskaya/
- https://ribalych.ru/2016/05/12/ballisticheskaya-raketa/
- https://arsenal-info.ru/b/book/638424124/5
- https://fishki.net/anti/2110914-7-rossijskih-ballisticheskih-raket-kotoryh-bojatsja-nashi-protivniki.html
- https://MilitaryArms.ru/boepripasy/rakety/luchshie-ballisticheskie-i-krilatie-raketi/
- https://aif.ru/society/army/harakteristiki_krylatyh_raket_rossii_sssr_i_ssha_infografika
- https://zen.yandex.ru/media/id/5e009f019515ee00ac587425/krylatye-rakety-rossii-i-ssha-5e21f7cda3f6e400b5c41713
- https://www.PopMech.ru/weapon/8246-krylatye-rakety-istoriya-liderstva-vooruzhenie-rossii/
- https://tvzvezda.ru/news/opk/content/201707261438-9kwj.htm
[/spoiler]